Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Fungi (Basel) ; 9(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37755056

RESUMO

The use of the cationic, dye thioflavin T (ThT), to estimate the electric plasma membrane potential difference (PMP) via the fluorescence changes and to obtain its actual values from the accumulation of the dye, considering important correction factors by its binding to the internal components of the cell, was described previously for baker's yeast. However, it was considered important to explore whether the method developed could be applied to other yeast strains. Alternative ways to estimate the PMP by using flow cytometry and a multi-well plate reader are also presented here. The methods were tested with other strains of Saccharomyces cerevisiae (W303-1A and FY833), as well as with non-conventional yeasts: Debaryomyces hansenii, Candida albicans, Meyerozyma guilliermondii, and Rhodotorula mucilaginosa. Results of the estimation of the PMP via the fluorescence changes under different conditions were adequate with all strains. Consistent results were also obtained with several mutants of the main monovalent transporters, validating ThT as a monitor for PMP estimation.

2.
J Fungi (Basel) ; 8(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36354917

RESUMO

Pollutants, such as polycyclic aromatic hydrocarbons (PAHs), e.g., benzo(a)pyrene (BaP), are common components of contaminating mixtures. Such compounds are ubiquitous, extremely toxic, and they pollute soils and aquatic niches. The need for new microorganism-based remediation strategies prompted researchers to identify the most suitable organisms to eliminate pollutants without interfering with the ecosystem. We analyzed the effect caused by BaP on the growth properties of Candida albicans, Debaryomyces hansenii, Rhodotorula mucilaginosa, and Saccharomyces cerevisiae. Their ability to metabolize BaP was also evaluated. The aim was to identify an optimal candidate to be used as the central component of a mycoremediation strategy. The results show that all four yeast species metabolized BaP by more than 70%, whereas their viability was not affected. The best results were observed for D. hansenii. When an incubation was performed in the presence of a cytochrome P450 (CYP) inhibitor, no BaP degradation was observed. Thus, the initial oxidation step is mediated by a CYP enzyme. Additionally, this study identified the D. hansenii DhDIT2 gene as essential to perform the initial degradation of BaP. Hence, we propose that D. hansenii and a S. cerevisiae expressing the DhDIT2 gene are suitable candidates to degrade BaP in contaminated environments.

3.
Biochim Biophys Acta Gen Subj ; 1866(8): 130154, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35461922

RESUMO

Six different yeasts were used to study their metabolism of glucose and xylose, and mainly their capacity to produce ethanol and xylitol. The strains used were Candida guilliermondii, Debaryomyces hansenii, Saccharomyces cerevisiae, Kluyveromyces marxianus, Meyerozyma guilliermondii and Clavispora lusitaniae, four isolated from a rural mezcal fermentation facility. All of them produced ethanol when the substrate was glucose. When incubated in a medium containing xylose instead of glucose, only K. marxianus and M. guilliermondii were able to produce ethanol from xylose. On the other hand, all of them could produce some xylitol from xylose, but the most active in this regard were K. marxianus, M. guilliermondii, C. lusitaniae, and C. guilliermondii with the highest amount of xylitol produced. The capacity of all strains to take up glucose and xylose was also studied. Xylose, in different degrees, produced a redox imbalance in all yeasts. Respiration capacity was also studied with glucose or xylose, where C. guilliermondii, D. hansenii, K. marxianus and M. guilliermondii showed higher cyanide resistant respiration when grown in xylose. Neither xylose transport nor xylitol production were enhanced by an acidic environment (pH 4), which can be interpreted as the absence of a proton/sugar symporter mechanism for xylose transport, except for C. lusitaniae. The effects produced by xylose and their magnitude depend on the background of the studied yeast and the conditions in which these are studied.


Assuntos
Xilitol , Xilose , Etanol/metabolismo , Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Xilitol/metabolismo , Xilose/metabolismo
4.
Curr Genet ; 66(6): 1135-1153, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32719935

RESUMO

Halotolerant species are adapted to dealing continually with hyperosmotic environments, having evolved strategies that are uncommon in other organisms. The HOG pathway is the master system that regulates the cellular adaptation under these conditions; nevertheless, apart from the importance of Debaryomyces hansenii as an organism representative of the halotolerant class, its HOG1 pathway has been poorly studied, due to the difficulty of applying conventional recombinant DNA technology. Here we describe for the first time the phenotypic characterisation of a null HOG1 mutant of D. hansenii. Dhhog1Δ strain was found moderately resistant to 1 M NaCl and sensitive to higher concentrations. Under hyperosmotic shock, DhHog1 fully upregulated transcription of DhSTL1 and partially upregulated that of DhGPD1. High osmotic stress lead to long-term inner glycerol accumulation that was partially dependent on DhHog1. These observations indicated that the HOG pathway is required for survival under high external osmolarity but dispensable under low and mid-osmotic conditions. It was also found that DhHog1 can regulate response to alkali stress during hyperosmotic conditions and that it plays a role in oxidative and endoplasmic reticulum stress. Taken together, these results provide new insight into the contribution of this MAPK in halotolerance of this yeast.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana Transportadoras/genética , Osmorregulação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Álcalis/efeitos adversos , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Pressão Osmótica/fisiologia , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Saccharomycetales/fisiologia , Transdução de Sinais/genética
5.
Fungal Biol ; 122(10): 977-990, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30227933

RESUMO

The physiological behavior of Debaryomyces hansenii in response to saline stress and elevated pH was studied. The combination of 1 M NaCl salt and pH 8.0 was required to produce significant changes in the lag phase of growth and a consequent effect on viability. pH 8.0 in the absence or presence of 1 M NaCl produced changes in physiological functions such as respiration, acidification, rubidium transport, transmembrane potential, and fermentation. Our data indicated a stimulation of the H+-ATPase of the plasma membrane at pH 8.0, which increased the transmembrane potential and favored the entry of Na+; this effect was intensified in the presence of NaCl, so the increased energy expenditure resulting from H+ pumping and the extrusion of excess Na+ affected viability. The gene expression pattern studied by microarrays of cells incubated under saline conditions and high pH revealed a down-regulation in genes related to energy-producing pathways and in some genes involved in the cell cycle and DNA transcription, confirming our experimental hypothesis. Although D. hansenii can tolerate high pH and high salt concentrations, its physiological behavior, is better at pH 6.0 and in the absence of sodium; thus, it is an alkali-halotolerant yeast and not a halophilic yeast as previously proposed by other authors.


Assuntos
Metabolismo Energético/genética , Regulação Fúngica da Expressão Gênica , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Tolerância ao Sal/genética , Regulação para Baixo , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Saccharomycetales/genética , Cloreto de Sódio
6.
FEMS Yeast Res ; 9(8): 1293-301, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19702870

RESUMO

The presence of 1.0 M KCl or NaCl during growth of Debaryomyces hansenii results in increased ethanol production. An additional increase of fermentation was observed when the salts were also present during incubation under nongrowing conditions. Extracts of cells grown in the presence of salt showed increased alcohol dehydrogenase and phosphofructokinase activities, indicating that these enzymes are responsible for the increased fermentation capacity. This is confirmed by measurements of the glycolytic intermediates. The increased fermentation capacity of the cells grown with salts seems to enable them to cope with the additional energy required for uptake and/or efflux of cations.


Assuntos
Ativadores de Enzimas/farmacologia , Etanol/metabolismo , Saccharomycetales/metabolismo , Sais/farmacologia , Álcool Desidrogenase/metabolismo , Fermentação , Glicólise , Fosfofrutoquinases/metabolismo
7.
FEMS Yeast Res ; 8(8): 1303-12, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18752629

RESUMO

Debaryomyces hansenii was grown in YPD medium without or with 1.0 M NaCl or KCl. Respiration was higher with salt, but decreased if it was present during incubation. However, carbonylcyanide-3-chlorophenylhydrazone (CCCP) markedly increased respiration when salt was present during incubation. Salt also stimulated proton pumping that was partially inhibited by CCCP; this uncoupling of proton pumping may contribute to the increased respiratory rate. The ADP increase produced by CCCP in cells grown in NaCl was similar to that observed in cells incubated with or without salts. The alternative oxidase is not involved. Cells grown with salts showed increased levels of succinate and fumarate, and a decrease in isocitrate and malate. Undetectable levels of citrate and low-glutamate dehydrogenase activity were present only in NaCl cells. Both isocitrate dehydrogenase decreased, and isocitrate lyase and malate synthase increased. Glyoxylate did not increase, indicating an active metabolism of this intermediary. Higher phosphate levels were also found in the cells grown in salt. An activation of the glyoxylate cycle results from the salt stress, as well as an increased respiratory capacity, when cells are grown with salt, and a 'coupling' effect on respiration when incubated in the presence of salt.


Assuntos
Cloreto de Potássio/farmacologia , Saccharomycetales , Cloreto de Sódio/farmacologia , Aerobiose , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Meios de Cultura , Glioxilatos/metabolismo , Resposta ao Choque Térmico , Consumo de Oxigênio , Bombas de Próton/efeitos dos fármacos , Bombas de Próton/fisiologia , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Desacopladores/farmacologia , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA